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Introduction to subject

A semiconductor is a material that has a resistivity value in
between that of a conductor and an insulator. A
semiconductor material is a device that allows the passage of
electric current through it.

Consider the device CPU, it consists of many numbers of
transistors within it and these transistors contain the
semiconductor material which allows the passage of current
and all these are controlled by a switch.

Here in a transistor, the passage of electric current is
controlled by the actions based on the state of the switch
whether it is on or off. Hence such a device, which allows the
current to pass through them partially is called a
semiconductor device.



Examples of Semiconductor Devices

• These devices are said to be neither good insulators nor good 
conductors, hence the name ‘Semi Conductors’. 
The semiconductor examples include the following:

• op-amps

• resistors

• capacitors

• diodes

• Transistors
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Future scope

Study of semiconductor physics is important from the 
viewpoint of its technological applications. The knowledge of 
Semiconductors will help in understanding the mechanisms of 
various electronic devices used in day to day life.

Applications of Semiconductor Devices

• They are used in the designing of logic gates and digital 
circuits.

• These are used in microprocessors.

• They are also used in analog circuits such as oscillators and 
amplifiers.

• Used in high voltage applications.



Unit 1: Electronic Materials
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Basics of quantum mechanics
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•Particle in rigid one-dimensional box



De-broglie Hypothesis

• The de Broglie hypothesis states that particles of matter can behave

as both waves and particles, just like light.

• In quantum mechanics, matter is believed to behave both like a

particle and a wave at the sub-microscopic level. The particle

behavior of matter is obvious. When you look at a table, you think of

it like a solid, stationary piece of matter with a fixed location. At this

macroscopic scale, this holds true. But when we zoom into the

subatomic level, things begin to get more complicated, and matter

doesn't always exhibit the particle behavior that we expect.



Wave function and its physical significance

• A wave function in quantum physics is a mathematical
description of the quantum state of an isolated quantum
system. The wave function is a complex-valued
probability amplitude, and the probabilities for the
possible results of measurements made on the system
can be derived from it. The most common symbols for a
wave function are the Greek letters ψ or Ψ.

• Properties:

• ψ and d ψ /dt should be Single valued.

• ψ and d ψ /dt should be continuous.

• ψ and d ψ /dt should be finite.



Schrödinger  Equations
• The Schrödinger equation is a linear partial differential

equation that describes the wave function or state function of
a quantum-mechanical system.

• Time-dependent equation

The most general form is the time-dependent Schrödinger
equation (TDSE), which gives a description of a system evolving
with time:

Where                       is reduced Planck constant.        is state of quantum 
system.     



Time-independent equation

The time-dependent Schrödinger equation described above predicts that wave
functions can form standing waves, called stationary states. These states are
particularly important as their individual study later simplifies the task of
solving the time-dependent Schrödinger equation for any state. Stationary
states can also be described by a simpler form of the Schrödinger equation, the
time-independent Schrödinger equation (TISE).



Particle in rigid one-dimensional box

A particle in a one-dimensional box is the name given to a
hypothetical situation where a particle of mass m is confined
between two walls, at x=0 and x=L. In the infinite square well
that we will consider, the potential energy is zero within the box
but rises instantaneously to infinity at the walls.



the solution in this form.

where C and D are two more arbitrary constants, and 0 ≤ x ≤ L .

Now, because of the presence of the potential walls, we shall
see that further restrictions upon the permitted wavefunctions
arise. For x > L or x < 0 , the wavefunction may bWithin the box,
the Schrodinger equation for the particle is precisely the same
as that for a particle in free space ( V = 0), which was solved on
this page.

• If we use the first of the boundary conditions we obtain 0 = C 
(as cos 0 = 1 and sin 0 = 1) which implies that the 
wavefunction for the particle in a one-dimensional box 
reduces to

• If we then put x = L and apply the second boundary condition, 
we obtain:                               DsinkL=0



The boundary condition may thus only be satisfied if kL is an integer multiple 
of π, as the sine of any integer multiple of pi is zero. Thus we may write:

Note that n = 0 is not an acceptable solution, as it implies k = 0, which
again makes the wavefunction zero everywhere. Note that the above
equation tells us that the energy of the particle is now quantised,
limited to discrete values. This quantisation arises due to the
restriction of n to discrete values, and this arises out of a need to
fulfil the boundary conditions imposed on the system.
It is a general observation that quantisation of a physical property
such as the energy arises due to boundary conditions, as it is these
conditions that render some solutions unacceptable. Note also that
the gaps between adjacent energy levels decrease as the integer n
increases.
Thus the complete, normalised wavefunction for the particle in a one-
dimensional box is:



• The wavefunctions and energies are labeled with
a quantum number, n.

• A quantum number is a number (an integer, or in some
cases a half-integer) which labels the state of the
system. For a particle in a box, there are an infinite
number of acceptable wavefunctions (and thus an
infinite numbers of states in which the system may
found) , and the quantum number n specifies which
state the system.

• The fact that n cannot be zero means that the lowest
amount of energy the particle may possess (when n is 1)
is not zero, as would be permitted in classical mechanics
(and would imply a completely stationary particle) but is
in fact,This minimum, irremovable energy of the particle
is called its zero-point energy.



Classical free electron theory: 
Drude-Lorentz theory
• Metals consist of large number of free electrons that behaves 

like a molecules of perfect gas.

• Assembly of free electrons in a metal: free electron gas

• Random motion of free electron gas: speed is function of 
temperature, no practical contribution to conductivity

• On application of external field, random motion is modified, e-
have some drift velocity

• All valence electrons can absorb energy. Average K.E.= 3/2 KT

• Follows Maxwell-Boltzman statistics

• Potential is uniform everywhere inside the crystal

• P.E. of electron inside the metal is neglected. Therefore, Total 
Energy= K.E.



Failure of Classical free 
electron theory
• Could not explain heat capacity of free 

electron gas

• Could not explain paramagnetic 
susceptibility of free elelctrons

• Could not explain variation in electrical 
conductivity with temperature

• Could not explain Wiedemann-Frenz law

• Could not explain long mean free path at 
low temperatures



Need of Quantum theory

•Fermi- Dirac Statistics

•Pauli exclusion principle

•Sommerfield free electron theory



Postulates of Quantum free 
electron theory (Sommerfield
Theory)
• Free electrons in metal are free particle in box

• Electrons obey Pauli exclusion principle

• Electrons have high K.E. than classical K.E

• Electrons move in constant potential field



Fermi-Dirac Statistics: 
Occupation Probability



Density of states
The density of states (DOS) is essentially the number of different states at a
particular energy level that electrons are allowed to occupy, i.e. the number of
electron states per unit volume per unit energy.
Now that we have seen the distribution of modes for waves in a continuous
medium, we move to electrons. The calculation of some electronic processes
like absorption, emission, and the general distribution of electrons in a material
require us to know the number of available states per unit volume per unit
energy.

The density of states is once 
again represented by a 
function g(E) which this 
time is a function of energy 
and has the 
relation g(E)dE = the 
number of states per unit 
volume in the energy 
range: (E,E+dE).



Failures of Quantum free 
electron theory
• This theory did not include mean free path.

• Could not explain conductivity of divalent and
trivalent atoms

• Relaxation time is assumed to be same for
thermal and electrical conductivity but they are
not same. Phonons also carry thermal energy.

• Fermi surface considered spherical but it is not
spherical

• Could not explain metallic properties of crystals



Material Valency ρ (Ω•m) at 20 °C
Resistivity

σ (S/m) at 20 °C
Conductivity

Silver 1 1.59×10
−8

6.30×10
7

Copper 1,2 1.68×10
−8

5.96×10
7

Gold 1,3 2.44×10
−8

4.10×10
7

Aluminum 3 2.82×10
−8

3.5×10
7

Zinc 2 5.90×10
−8

1.69×10
7



Band theory of solids

 In the free electron theory a constant potential was assumed

inside the solid.

 In reality the presence of the positive ion cores gives rise to a

varying potential field. In a simple model the potential as in

Fig.1 can be assumed (‘a’ is the lattice spacing and ‘w’ is the

width of the potential). If ‘w’ 0, we get ‘’ functions.

 The travelling electron wave interacts with this periodic

potential (for a crystalline solid).

 The electron wave can be Bragg diffracted.



Bragg diffraction from a 1D solid
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The Velocity of electrons for the above values of k are zero.

These values of k and the corresponding E are forbidden in the 

solid.

The waveform of the electron wave is two standing waves.

The standing waves have a periodic variation in amplitude and 

hence the electron probability density in the crystal.

The potential energy of the electron becomes a function of its 

position

(cannot be assumed to be constant (and zero) as was done in the 

free electron model).





E-K diagrams: Energy is periodic in K

1) Periodic Zone
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Effective mass of electron

 The magnitude of the Energy gap between two bands is the 

difference in the potential energy of two electron locations.

 The effective mass of an electron (m*) in a solid could be 

different from the rest mass (m0). The effective mass can be 

larger or smaller than the rest mass. 

 Collisions with atoms increases the rest mass, while 

enhanced propagation in the crystal gives a reduced effective 

mass. 

 From the concept of group velocity the effective mass can be 

deduced. It is related to the curvature of the E-k curve. Close 

to band edges, m* can be negative.



a


k →

E
  

→

K.E of the electron increasing

Decreasing velocity of the electron

ve effective mass (m*) of the electron 

Within a band

 

2
*

2 2 2

1

4 /

h
m

d E dk




Direct indirect band gap



Types of electronic materials:
metals, semiconductors, and 

insulators



Energy band diagram: METALS

Monovalent metals

Divalent metals

 Monovalent metals: Ag, Cu, Au → 1 e in the outermost orbital

 outermost energy band is only half filled

 Divalent metals: Mg, Be → overlapping conduction and 

valence bands

 they conduct even if the valence band is full

 Trivalent metals: Al → similar to monovalent metals!!!

 outermost energy band is only half filled !!!



Energy band diagram: SEMICONDUCTORS

2-3 eV

 Elements of the 4th column (C, Si, Ge, Sn, Pb) → valence band full but no overlap 

of valence and conduction bands

 Diamond → PE as strong function of the position in the crystal

 Band gap is 5.4 eV

 Down the 4th column the outermost orbital is farther away from the nucleus and 

less bound  the electron is less strong a function of the position in the crystal 

reducing band gap down the column

Valence Band

Conduction Band

Semiconductor



Energy band diagram: INSULATORS

> 3 eV

Valence Band

Conduction Band

Insulator

Insulators does not have any feevetive
free electron. Therefore, transition of
electron from valence band to
conduction band is not posiible.


